Paginated Reports Recipe eBook – first two recipes

First and most importantly, I want to acknowledge and thank these contributing authors who wrote report recipes and working samples included in this eBook:

  • Robert Bruckner
  • Kirill Perian
  • Kathi Kellenberger
  • Stacia Varga
  • Tomaž Kaštrun
  • Tom Martens

As I am working on posting the initial report recipes, I wanted to share some comments about the first two recipes. These recipes are step-by-step instructions that lead through the start-to-finish process using provided sample database, and can be used with SQL Server Reporting Services (SSRS), Paginated Report Server or Paginated Reports published to a Power BI Premium capacity workspace. Reports may be authored with Power BI Report Builder, Report Builder or SQL Server Data Tools/Visual Studio. Additional recipes will follow.

The eBook with all of the recipes will be accessible from the main menu here on the blog. Each recipe is published as a page rather than a post, so you don’t have to search and try to figure out when each one was originally posted. As of tonight, I have published eight of twelve recipes that have been completed thus far. I’ll get others posted in the near future. Please enjoy these and watch for more paginated report recipes here: Paginated Report Recipes eBook | Paul Turley’s SQL Server BI Blog

The first two recipes in the Paginated Report Recipe eBook are about applying alternate row and group shading. Dating back to the early days of printed reports, this style of reports were called “greenbar reports” because they were literally printed on continuous, pin-fed paper that had alternating shaded green and white rows to make it easier for someone reading the report to follow-along.

As the industry evolve from scrolling paper reports to laser-printed pages and then to on-screen reports, the greenbar effect was still useful. Recipe #1 introduces expression-based styling by changing the background color using the modulus (divisional remainder) of the row number in a table data region. If the row number is on odd number, set the background color to a shading color. Otherwise, set it to white or transparent.

01: Alternate Row Table “Green Bar” Report | Paul Turley’s SQL Server BI Blog

In recipe #2, contributing author Kirill Perian takes this technique to the next level by maintaining the alternate shading across column and row groups in a matrix data region. The method is a little more involved than just using the row number. He uses a hidden column to track the column group and then an expression to reference that value to manage the background shading for each row.

02: Alternate Row Shading in Matrix (with Column Groups) | Paul Turley’s SQL Server BI Blog

The end results looks similar to the simple table report using in recipe #1 but the problem is a little more complex in a matrix report because of the column groups. The advantage of this technique is that it will work across row and column groups at multiple levels.

Paginated Reports eBook Finally Released

At last, the second edition of “SQL Server Report Recipes” written by Paul Turley, Robert Bruckner and a host of contributors; is being released, a few recipes at a time. This time around, it will be a free book published through my blog and perhaps other sources. I’ve posted the introductory chapter and six report design recipes. You may also download the sample SQL Server database used in all the recipe reports. I sincerely hope that you and others will use this as a free resource to serve the common interest of the greater community. Please spread the word and send those who might learn and benefit to this page.

The work on this book really started about eighteen years ago…

Late December back in 2003; what a very special time for me! SQL Server Reporting Services was due to be released to the market and I had been using the pre-released version to integrate reports into a custom web application. After using a variety of products like FoxPro, Access and Crystal Reports, and after mastering essential T-SQL queries and .NET programming, using SSRS was a dream. It was simple and elegant, programmable and powerful. I was so excited that I wanted to tell the world, so I recruited authors to write our first book about Reporting Services. Three editions later, I teamed up with Robert Bruckner, one of the lead developers on the SSRS product team at Microsoft, to write a different kind of book. Robert and I had both blogged quite a lot about report design techniques. Robert had done some crazy things in SSRS that no one knew was possible. He found very creative ways to develop games using SSRS such as tic-tac-toe, hangman and Battleship. Honestly, there are easier ways to do game programming, but he proved that almost anything was possible if you were willing to think outside the box and maybe even draw outside the lines a bit.

Several contributing authors have worked tirelessly over the past difficult year to make this eBook a reality. Others, through no fault of their own, sign-up to contribute to the book but “the year that shall not be named” had other plans. At first we paused, and then we stopped and then we regrouped and decided to publish a shorter but comprehensive, modern kind of book.

Please visit the new Welcome and Introductory page with the Table of Contents to the current and future recipes: Paginated Report Recipes: 2020-2021 | Paul Turley’s SQL Server BI Blog

Doing Power BI the Right Way: 4. Power Query design best practices

Part of the the series: Doing Power BI the Right Way (link)

Although my professional focus is building enterprise-scale BI solutions, I’ve created my share of informal Power BI reports that were put together quickly, with the goal to create something “good enough” rather then achieving perfection. This guide is about designing proper and formal solutions but these practices apply to any Power BI project that needs to survive future maintenance.

When you need to load data into a data model, you have a few options and the right choice is going to depend on a few factors. This equation is usually a balance between quickly and conveniently generating a table or using a disciplined approach to get reliable data from a sustainable source of record. The following image shows that data can be transformed in the source (or before data is loaded into the source) or within Power Query using Power BI Desktop.

Convenience or Scale?

Life is full of choices and trade-off decisions. Let’s say that you need to create a lookup table containing sales regions and this information doesn’t exist in the source database. You could easily create a new table in Power Query using the “Enter Data” feature, and just manually enter the sales regions. This would solve the immediate problem with very little effort, but how will the table be maintained if sales regions are added or change in the future? We could keep the list of values in an Excel file stored in SharePoint for a business owner to maintain when information changes. You could also go all the back back to the beginning of the process and load a dimension table in the source database. IT professionals might take the hardline and say that all data must flow through the data warehouse regardless of the effort and cost. Which of these is the right choice? …it depends on the scope reporting project, and the long-term ownership of the solution. Sometimes quick and convenient are OK but particularly tables that need to scale and handle larger data volumes in the future, the following guidelines are critical.

I’ll get to the point and then explore the details afterward. Start with these fundamentals:

  • A proper data model is the heart of a Power BI report solution.
  • The purpose of Power Query is to shape and prepare each of the tables loaded into the data model.
  • The tables, fields and measures in the data model should be uncomplicated and user-friendly; intuitive and easy to navigate.

Recommended Practices

Following are the general best-practices I religiously apply when creating queries. After briefly describing each recommended practice, I’ll break it down and review some in detail.

PracticeExplanation
Use parameters for query paths & connectionsParameters are used to make the solution portable. Any connection information, like a file path or database server name, should be stored in a parameter so it can be changed without modifying query code.
For large SQL tables, reference either tables or viewsPower Query has optimizations built-in to work with different data connectors. Several connectors support query folding, where Power Query translates query steps into the native query language.
Starting with a SQL query rather than selecting a table or view from the list of database objects will ensure that query folding will not work. When possible, start with a table and if you need to use SQL to prepare data before loading it with Power Query, create a view.
Limit large table volume using data range parameters, compatible with Incremental RefreshIncremental Refresh enables the Power BI service to partition large tables and only load data that changes rather then the entire table when the dataset is refreshed. This was once a Premium-only feature that now works with shared capacity licensing with datasets up to 1GB in size. Even if you don’t intend to use the Incremental Refresh feature, using a pair of date range parameters allows you to filter large tables and keep the PBIX file size small. After publishing the file to the service, you can update the parameters and load more records.
Create two date/time type parameters named RangeStart and RangeEnd, and then add a date range filter according to these instructions.
Remove all unneeded columnsResist the urge to leave columns that you are not sure that you need for reporting. In each query, remove all unneeded columns early in the sequence applied steps. The easiest way to do this is to use the Choose Columns button on the Home ribbon and deselect columns. To change the selection later, click the gear icon next to the Remove Other Columns step.
Rename using title case for all table names and column names that will be visible in the data modelAlthough it may seem trivial, it is absolutely necessary to apply friendly naming conventions to all tables and fields. Chris Webb wrote an excellent post and about object naming conventions. As a rule, rename all columns that will not be hidden in the data model, using friendly title names (with spaces and mixed case).
There is no need to rename primary key, foreign key and other utility fields. After tables are added tot he data model, hide those fields to remove clutter and confusion for report developers (even if you are the report developer).
Explicitly set data type for all columnsColumn renaming and changing the data types an be time-consuming work but be meticulous about check every column returned by the query.
Consolidate multiple steps of the same type (such as change type and rename columns)As query design evolves, you will inevitably create inefficient queries with redundant steps. There will always be opportunities to improve the design, often by consolidating and reorganizing steps.
Rename key steps to document purpose and aid future developmentRenaming query steps allows you to understand the function and purpose of each step in the Applied Steps list. This creates a self-documented series of operations that will be easier to maintain down the road.
Add code comments in the M script and/or step descriptions to document queriesYou can further document query steps by changing the step Description in the Properties window or by adding code comments in the Advanced Query Editor.
Use steps that promote query foldingMany query steps allow records to flow-through without blocking subsequent steps. There are also certain transformation steps that must read all the records into memory to apply the transformation.
Move steps that break query folding as late as possibleSteps that support query folder, that can be translated into the native query language of the data provider, should be performed first. If non-foldable steps can’t be avoided, they should be performed as late as possible in the sequence of query steps.
Perform Pivot, Unpivot, Transpose transformations only on small result setsThese transformations must load all records into memory. They are powerful but have volume and performance limitations. Test them with production-scale source data.
Create row-level calculations in Power Query instead of DAXRow-level calculations and derived column values can be performed either using Power Query or DAX, but M s a far more capable language for data transformation. Effective data preparation using Power Query will simplify and ease the burden of data model design. Regardless of the relative efficiency, if you perform all data preparation and transformation in one place, this can simplify maintenance in the future. There are less-common cases where DAX is the best choice to create calculated tables and calculated columns outside the scope of a single row.
Avoid using DirectQuery when not warranted by latency and data volume requirementsDirectQuery has it’s place in data model design but it should be an exception to the normal pattern of importing data into an in-memory data model. DirectQuery tables can work with simple aggregation calculations but don’t perform well using many other DAX functions.
Use DirectQuery to aggregate values over very large tables that won’t otherwise fit into memory, or to support drill-through into non-aggregated detail records. These are advanced design patters that should be treated as rare and exceptional.
Avoid using native SQL queries, especially with large source tablesNative SQL queries don’t support query folding so they should be avoided when possible. This may be a an acceptable exception to load low-volume query results but generally use a database table or view for query data sources.
Use Date/Time values for dates (use Date or Time)Load column data only at the necessary level of grain so values in the data model will compress. In particular, reduce date/time values to date only. For time-level resolution, store date and time values in separate columns.
Import or create Date/Time tables in Power Query rather than using auto-generated date hierarchiesAuto-generated calendar tables in Power BI Desktop are fine for self-service projects but purposely-built date tables will afford more flexibility.
If available, use a date dimension table in your data warehouse or source database. Secondarily, generate a date table using Power Query.
Date tables can effectively be created with DAX functions but if all tables are loaded with Power Query this gives you the convenience of managing all tables centrally.

Breaking It Down

Let’s take a deeper look at some of these recommendations.

Use parameters for query paths & connections

For every file path, web address or server name in source connections; use a parameter. It is not hard to go back and edit source connection information using the Advanced Editor but the easiest way to build parameterized connections is to build them as you go.

Start by enabling the feature “Always allow parametrization in data source and transformation dialogs” on the Power Query Editor page in the Option dialog.

As you build each query connection, for most connection types, you will be promoted to select or create a new parameter.

Here is an example of the parameters in a demonstration project. Without modifying any code or editing a query, any of these values can be changed easily.

Here are two examples of parameterized connections. For the SQL Server connection, the server/instance name is passed as the first argument to the Sql.Database function. The second example concatenates the folder path (stored in the SourceFolderPath parameter) with the file name to create the fill folder and file path.

For large SQL tables, reference either tables or views

The best way to guarantee poor query performance with a relational data source is to start with a hand-written native query (like SQL) and then perform transformations on the results.

If a query is based on a relational table or view, Power Query can generate the native SQL (and a few other supported languages) with a SQL statement rather than selecting a table or view.

Use Query Diagnostics to Diagnose and Performance Tune

The following image shows the results of Power Query Diagnostics which I describe here: Power BI Query Performance & Query Diagnostics | Paul Turley’s SQL Server BI Blog. This post demonstrates how to capture timings for each step and overall queries.